Post

Game Theory with Applications to Finance and Marketing I, Lecture1 Notes(Sep. 22)

Game Theory with Applications to Finance and Marketing I, Lecture1 Notes(Sep. 22)

Category of Game

 static(靜態賽局)dynamic(動態賽局)
asymmetric(資訊對稱)NESPNE
non-asymmetric(資訊不對稱)BEPBE(The most complicated)

These are:

  • Nash equilibrium (NE)
  • subgame perfect Nash equilibrium (SPNE)
  • Bayesian equilibrium (BE)
  • perfect Bayesian equilibrium (PBE)

Examples of the Games

Normal form of a game

描述赛局时,通常包含以下三个部分:

  • i. the set of players(赛局参加的玩家/决策者)
  • ii. the strategies available to each player(决策者可以作出的决定)
  • iii. the payoff of each player as a function of the vector of all players’ strategic choices(决策者做出决定后得到的好处)

以上称为一个赛局的normal form

Example of a Game

image

  • Players? Player1 and 2
  • Strategies available?
    • For player1, is ${U, D}$;
    • For player2, is ${L, R}$;
  • Players get what?
    • We shall write it as a function:
    • i.e If player1 chooses U and player2 chooses L, it shall be written as:
      • $u_1(U, L) = 0$
      • $u_2(U, L) = 1$
  • Hint: 函数$u_1(., .)$和$u_2(., .)$被称为两个player的效用函数(payoff functions)

Definition of NE(Nash equilibrium)

假设player1的策略集为X,player2的策略集为Y,如果对$x^* \in X$, $y^* \in Y$都有: \(u_1(x^*, y^*) \ge u_1(x, y^*)\)

\[u_2(x^*, y^*) \ge u_2(x, y)\]

相当于:

  • 从player1的角度:对手出招$y^$,我无论出招什么,结果都不比$x^$这一招来的好;
  • 从player2的角度:对手出招$x^$,我无论出招什么,结果都不比$y^$这一招来的好;
  • 其实是一种站对方立场考虑的方式

这样的一个策略对(strategy pair) ($x^, y^$)被称为一个赛局的Nash equilibrium。

Mixed Strategy

一个混合的策略是说,player不是单纯的出招x,而是在ta可行的策略集合中,以一个概率分布来出招。 例如: image

  • player1 可以设定自己出招U的概率为1/2,出招D的概率为1/2,这就是一个混合策略;
  • player2可以设定自己出招L的概率为1/3,出招R的概率为2/3,这也是一个混合策略。

NE for Mixed Strategy

以下面这个例子为例,求解player1和player2的混合策略? image

解: 我们可以设定player1出招U的概率为p,出招D的概率为1-p;player2出招L的概率为q,出招R的概率为1-q。 先站在player1的角度考虑,player1的混合策略为:无论player2出招是什么,他出U、D结果要一样好。这样可以解 1) 对player1的策略U,player2采取混合策略的情况下,player1获得的payoff为: \(0 \times q + (-1) \times (1-q)\) 2) 对player1的策略D,player2采取混合策略的情况下,player1获得的payoff为: \(2 \times (q) + (-2) \times (1-q)\) 二者相等,解得$q = \frac {1} {3}$ > 同理,可以解得$p= \frac {1} {2}$

A more complicated Game

Consider a two-player game, where the two must pick an integer from the set {1, 2, …, 100} at the same time. If they pick the same number, then they each get 1; or else, they each get zero.

  • Find the pure strategy NE’s.
  • Find the mixed strategy NE’s.

Reference

This note is mainly derived from Chyi-mei Chen’s Game Theory with Applications to Marketing and Finance, I Course @ National Taiwan University. Thanks him for giving this kind of excellent lecture.

This post is licensed under CC BY 4.0 by the author.